Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Basic Microbiol, p. 1-11, nov. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4687

RESUMEN

To find effective silver nanoparticles (AgNPs) for control of phytopathogens, inthis study, two strains of actinomycetes isolated from the soil of the Brazilianbiome Caatinga (Caat5–35) and from mangrove sediment (Canv1–58) wereutilized. The strains were identified by using the 16S rRNA gene sequencing asStreptomycessp., related toStreptomyces mimosusspecies. The obtained AgNPswere coded as AgNPs35and AgNPs58and characterized by size andmorphology using dynamic light scattering, zeta potential, transmissionelectron microscopy, and Fourier transformed infrared (FTIR). The antifungalactivity of the AgNPs35and AgNPs58was evaluatedin vitroby the minimalinhibitory concentration (MIC) assay on the phytopathogens,Alternariasolani,Alternaria alternata, andColletotrichum gloeosporioides. The phytotoxiceffect was evaluated by the germination rate and seedling growth of rice(Oryza sativa). AgNPs35and AgNPs58showed surface plasmon resonance andaverage sizes of 30 and 60 nm, respectively. Both AgNPs presented sphericalshape and the FTIR analysis confirmed the presence of functional groups suchas free amines and hydroxyls of biomolecules bounded to the external layer ofthe nanoparticles. Both AgNPs inhibited the growth of the three phytopatho-gens tested, andA. alternatewas the most sensible (MIC≤4 μM). Moreover,the AgNPs35and AgNPs58did not induce phytotoxic effects on thegermination and development of rice seedlings. In conclusion, these AgNPsare promising candidates to biocontrol of these phytopathogens withoutendangering rice plants.

2.
An Acad Bras Cienc ; 91(2): e20180598, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31271566

RESUMEN

We have established how natural compounds from green propolis collected by the species Apis mellifera act against the growth of Pythium aphanidermatum. On the basis of mass spectrometry (Q-ToF MS), we determined that Artepillin C, the major constituent of green propolis, underlies the effect and displays activity against P. aphanidermatum at a minimal inhibitory concentration of 750 µg.mL-1. Biophysical studies based on model membranes showed that this inhibitory effect may be linked with a membrane-related phenomenon: Artepillin C increases the permeability of membranes with relatively high fluidity in their lateral structure, a feature that is in line with the lipid composition reported for the cytoplasmic membrane of P. aphanidermatum. Therefore, the present study supports the use of the effective and inexpensive green propolis to control the impact of the dangerous phytopathogen P. aphanidermatum on agriculture.


Asunto(s)
Antifúngicos/farmacología , Fenilpropionatos/farmacología , Própolis/química , Pythium/efectos de los fármacos , Animales , Antifúngicos/aislamiento & purificación , Abejas , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Fenilpropionatos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...